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ABSTRACT: The probabilistic assessment of ground motion intensity measures (IMs; e.g., peak ground accel-
eration) at an individual site is a standard practice. Less attention has been devoted to estimating the statistical
dependence of IMs from a single event at multiple sites due to common source and wave traveling paths and to
similar distance to fault asperities. This paper explores the site-to-site correlation of IMs and demonstrate its use
in seismic hazard and loss estimation. The use of a spatial correlation function will be shown in two applications:
1) evaluation of the effect of modeling spatially correlated ground motion fields on loss estimates for portfolios
of structures with different spacing patterns; and 2) simulation of U.S. Geological Survey (USGS) ground motion
ShakeMaps consistent both with the recorded IM values at each station and with the IM correlation structure.
This last case could be extremely valuable in USGS-sponsored efforts such as PAGER and ShakeCast.

1 INTRODUCTION

Many private and public stakeholders are strongly
affected by the impact of earthquakes on a regional
basis rather than on a single property at a specific site.
The stakeholders include government and relief orga-
nizations that need to prepare for future events and
manage emergency response, and private organiza-
tions that have spatially distributed assets. Whether for
mitigating future seismic risk or managing response
after an earthquake, assessment of regional earth-
quake impact requires a probabilistic description of
the ground motion field that an event could or has
generated. With knowledge, albeit probabilistic, of the
level of ground shaking at a regional level one could
more accurately estimate, for example, (1) the mon-
etary losses caused to specific structures or portfolio
of structures owned by a corporation or insured by an
insurance company, (2) the number of people killed,
injured, or displaced in a given region; (3) whether the
access to certain critical buildings, such as hospitals,
might be restricted due to yellow or red tagging; and
(4) the probability that distributed lifeline networks for
power, water, and transportation may be interrupted.
The probabilistic assessment of ground motion
intensity measures, IMs (e.g., peak ground acceler-
ation or spectral quantities) at an individual site based
on the event magnitude, the source-to-site distance,
and the local soil conditions is a standard practice

that started in the late 1960s. Much less attention has
been devoted, however, to estimating the statistical
dependence of ground motion IMs from a single event
at multiple sites. This paper provides a contribution
to filling this research gap. Furthermore, we intend
here to explore the effects of site-to-site correlation
of ground motion IMs in more depth, and demon-
strate their use in seismic loss estimation of spatially
extended portfolios of structures.

2 ESTIMATION OF SPATIAL CORRELATION

In general, three effects contribute to the correlation
of ground motion IMs at two sites: (a) they have been
generated by the same earthquake (e.g., a high stress-
drop earthquake may generate ground motions in the
region that are, on average, higher at all sites than the
median values from events of the same magnitude);
(b) the seismic waves travel over a similar path from
source to closely spaced; sites and (¢) if the dimensions
of the fault rupture are large compared to the distance
from the sites to the source, adjacent locations may be
located close to or far from the asperities on the fault
rupture.

Modern ground motion prediction equations
implicitly recognize the first cause of dependency via
a specific inter-event error term, 7;, as follows:

InY,;=InY  +m,+oe, (1)



where Y;; is the ground motion IM of interest (e.g.,

S.(T1)), InY;; is the median value of the log of ¥
predicted by the attenuation equation at site j given
the magnitude and distance of earthquake i and the
local site conditions, 7, is the aforementioned inter-
event standard normal error term, &;; is the site-to-site
intra-event standard normal error term, and 7 and o
are the corresponding standard deviations of the two
error terms, or “residuals.”

An alternative formulation for Equation 1, which
was common in older prediction equations, is given by

InY, =InY,, +6%, ®)

where &;; is a random variable representing both the
inter-event and intra-event variation at site j from
earthquake i. By comparing Equations 1 and 2, itis can
be seen that & must equal /o2 + 72 for the variances
of the two equations to be equal, and that
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In the context of assessing site-to-site correlation of
ground motion IMs, it is convenient to use the model
in Equation 2 for at least three reasons: (a) there is
now only one residual term for each observation (In ¥; ;
and ¢ are provided by ground motion prediction equa-
tions, and Y;; is observed, so &;; can be computed
directly); (b) the residual term is easy to compute (the
valuesofn;,i=1,...,N,forallthe N earthquakes and
the frequency-dependent values of t are usually not
included by the developers of ground motion predic-
tion equations in their publications); and (c) Equation 2
is also the form commonly used in probabilistic seis-
mic hazard analysis (PSHA) computer programs, so
spatial correlation models in this format can be more
easily incorporated into existing software.

An example of observed &;; residuals for peak
ground acceleration (PGA) from the 1999 Chi-Chi,
Taiwan, earthquake is shown in Figure 1; these resid-
uals, whose value is indicated by the color scale, are
the combined residuals from Equations 2 and 3 and
represent both the inter- and intra-event error terms.

The intra-event site-to-site ground motion correla-
tion, namely the correlation between the two random
variables ¢;; and ;; at two different sites j and k, due
to commonality of wave paths and of distance from
asperities has not yet been extensively investigated.
Spatial dependence can be observed in Figure 1, by
noting that residuals at nearby locations have similar
values. This intra-event site-to-site correlation, which
is of course not addressed in attenuation relationships
for single sites, is crucial for the spatially distributed
applications mentioned above.

The limited research on this topic to date indi-
cates that the correlation of peak ground acceleration
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Figure 1. Observed attenuation residuals from the 1999
Chi-Chi, Taiwan, earthquake.

or velocity values decreases with increasing spacing
between two sites. This correlation can be estimated
by computing empirical correlation coefficients for g; ;
values at a site separation distance / (plus or minus
some tolerance). Because the n; value is fixed for each
ith earthquake, it is effectively a constant when empiri-
cal correlation coefficients are estimated from a single
earthquake. Thus, correlation coefficients obtained
from ¢;; values or &; ; values will be identical, but these
correlation coefficients only represent the correlation
in the ¢;; values. To obtain correlation coefficients for
the & ; values, one must add the effect of the #; random
variable, which is perfectly correlated at all distances
but cannot be detected from the previous empirical cor-
relation coefficients. The total correlation in &;; values
is thus

ply =2 P @
o

where p(h) = pe,;, «;;,(h) is the empirical correlation
coefficient calculated for intra-event &;; values sep-
arated by a distance /, and p(h) = ps,;, z,,,(h) is the
correlation coefficient for the total &;; values defined
in Equation 3. Note that for very close sites (i.e., # — 0)
the correlation p(%) of IMs, of course, tends toward
one, whereas for very distant sites (i.e., # — 00) it is
simply given by the ratio of the inter-term-variance to
the total variance, as expected. The variance of the dif-
ference of the same IM quantity at two sites, £ and /,
separated by a distance 4 is simply

VARLX, - X,]=20°(1- p(h)) 5)

Several models currently exist for these correla-
tion functions (e.g., Boore et al., 2003; Kawakami



and Mogi; 2003; Wang and Takada, 2005; Jeon and
O’Rourke, 2005). The models differ in their results,
potentially due to differences in the IM parameter (e.g.,
peak ground acceleration versus peak ground veloc-
ity) or in the earthquake events being studied, and
to differences in estimation methodologies. Using a
comprehensive study of many IM parameters within
the framework described here, the authors expect to
identify and resolve these differences shortly.

In the simulation steps that follow below, the corre-
lation coefficient p(#) in Equation 4, which incorpo-
rates correlation due to common inter-event residuals
and spatial correlation of intra-event residuals, will
be used.

3 SIMULATION OF GROUND MOTION IMS
FOR LOSS ESTIMATION

It is a standard practice to model a ground motion IM,
Y;; (e.g., the spectral acceleration S,(71), at period
Ty), generated by earthquake i at a site j as a log-
normally distributed random variable (RV). In the
notation of Equation 2 this implies that its natu-
ral logarithm is a Gaussian RV, i.e., that InY;; ~

N(InY;; 52). We now make the reasonable assump-
tion that the In Y;; for all j=1,..., M sites affected
by earthquake i are not only marginally normally dis-
tributed, but also jointly normally distributed RV’s.
Under this assumption, the generation of a M -site ran-
dom field of ground motion IM values that are spatially
correlated involves the generation of a multivariate
Gaussian vector of correlated, standard normal random
variables, X =[Xj, Xy, ..., Xm], with a (symmetric,
positive definite) covariance matrix X, or in shorthand
X ~ Num(0, X). Here, X =@ j is the total residual term
in the model for the computation of In ¥;; described by
Equations 2 and 3. Note that, because &; ; has a standard
deviation of one due to normalization, the element of
3 in the & row and /" column is computed by sim-
ply evaluating Equation 4, using the distance between
site k£ and site / to evaluate the correlation function.
Earthquake i can be either a realization of a future
event or of a past event for which empirical observa-
tions of ground motion IMs atsitesk = 1,2, ..., K are
available.

In the future event case when no empirical observa-
tions of ground motions are available, the generation
of X can be done simply by recognizing that X = AU
where U=[U;, Uy,...,Uy] is a vector of indepen-
dent standard normal variates and the matrix A is the
Cholesky decomposition (i.e, matrix square root) of
%, that is the unique lower triangular matrix A such
that AAT = % (e.g., Melchers, 1999).

These &;; values (see Figure 2 for an example based
on the correlation function developed by Boore et
al., 2003) can then be added to the mean ground
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Figure 2.  One realization of an &; ; random field whose spa-
tial correlation is modeled after Boore et al. (2003). The
rectangle is the projection of the 1994 Northridge earthquake
rupture in southern California.

o Los Angeles

Figure 3. Map of spatially correlated 5% damped S,(0.3 s)
compatible with the rupture (white rectangle) of the 1994
Northridge earthquake. This map was generated using the
map of &;; shown in Figure 2.

motion term, In Y;;, in Equation 2 to obtain realiza-
tions of spatially correlated ground motion IMs. This
is precisely what has been done to produce the map
of 5%-damped S,(0.3s) shown in Figure 3, which
is based on the &;; field in Figure 2 and is com-
patible with the rupture and magnitude of the 1994,
Northridge earthquake. For the generation of this map
we used the digital soil map of Southern California
(http://www.consrv.ca.gov/), and the ground motion
prediction equation of Abrahamson and Silva (1997).
Note that in generating Figure 3, we assumed that the
correlation function for PGA developed by Boore et
al.(2003) is also applicable to the spatial correlation of
S,(0.3s). The map in Figure 3, like the ShakeMap pro-
duced by USGS (http://earthquake.usgs.gov/eqcenter/
shakemap/sc/shake/Northridge#0.3_sec_Period) is
consistent with the same rupture scenario but, unlike
the “real” ShakeMap, it does not preserve by design



any of the recordings from the real event and is pro-
duced for the geometric mean, not the maximum value,
of §,(0.3s) of the two horizontal components.
Section 5 presents an alternative method for pro-
ducing maps of correlated ground motion IMs for
past events that are consistent with ground motion
measurements at the recording stations.

4 PORTFOLIO LOSS ESTIMATION RESULTS

Using the simulation methodology in Section 3, we
have studied the seismic risk of two portfolios of
structures in the San Francisco Bay Area in Northern
California

o Portfolio 1: 1,090 properties (Figure 3) in the same
county.

o Portfolio 2: 133 properties (inset of Figure 3) in the
same postal code area.

Both portfolios are made of residential 1- to 3-story
woodframe buildings with an assumed replacement
value of $0.5M each. We will refer to Portfolio 1 as
the large portfolio and to Portfolio 2 as the small port-
folio. Note that here the adjectives “large” and “small”
denote the spatial size of the footprint of the portfolios
and not the number of properties contained in them.
Similar qualitative conclusions as those presented
below would have been found even if the spatially con-
fined Portfolio 2 contained more structures than in the
widely spread Portfolio 1.

As with conventional PSHA, the two portfolios
were subjected to a large catalog of future earthquake
events to estimate the likelihood of losses due to struc-
tural and non-structural damage. To study the effects of
spatial ground motion correlation modeling on port-
folio loss estimates, we generated a random field of
S,(0.3 5) in the affected region for each event in the
catalog according to the six approaches listed below.
In this loss estimation exercise, the random fields were
generated for S,(0.3s) because this ground motion
IM is a good predictor of the response of stiff wood-
frame buildings. Note that in all six cases, all the RV’s
were simulated according to a Gaussian distribution
truncated to £36.

1. Independent ground motions at each site (i.e., &;;
and &;; are independent RV’ if j # k, and
p(h)=0).

2. Spatially correlated ground motion field with
reduced correlation p(h) = p =1 / (6% + 72). This
expression is derived from Equation 4 after zero-
ing the p(h) term. The spatial correlation modeled
in this case is only due to the common value of the
inter-event term 7); (see Equation 1) at all sites. The
values of 62 = 0.6662 and 7% = 0.3452 for S,(0.3 s)
were taken from Lee ef al. (2000).
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Figure 4. Location of the large and small (inset) portfolios
considered for the loss estimation analysis.
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Figure5. Four ground motion correlation models for p(/) as

a function of inter-site distance, A, used in the loss estimation
analysis.

3. Spatially correlated ground motion field, where
the intra-event correlation term p(h)=1—

[1- e*‘/m]2 in Equation 4 is obtained according
to the function by Boore ef al. (2003).

4. Spatially correlated ground motion field with
a preliminary alternative correlation function
p(h)=e"/9 developed by Baker (2006) based
on an analysis of the residuals for the Chi-Chi
earthquake only.

5. As in Case 3 but with the separation distance at
which the correlation coefficient has decreased to
p=e"! (Vanmarcke 1983) suggested by Boore et
al. doubled (i.e., 0.6 is replaced by 0.3 in the equa-
tion above). This case is considered as an upper
bound of ground motion correlation.

6. &;; and & are assumed to be perfectly positively
correlated RV'’s.

The trend of p(k) with site-to-site distance, 4, for
Cases 2—6 is shown in Figure 5. Cases 3-5 are fully
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Figure 6. Mean rate of exceedance curves for losses to the
large portfolio (top) and small portfolio (bottom) computed
using the six proposed models for simulating random fields
of ground motion IMs for each earthquake.

consistent with the methodology in Section 3, Case 2 is
considered because, for its simplicity, it has been used
to model ground motion correlation in many appli-
cations. Case 1 has a place in here because in the
overwhelming majority of cases ground motion spa-
tial correlation is simply disregarded. Finally, Case 6 is
an unrealistic, extreme case included for comparison
purposes only.

The losses expressed as a fraction of the replace-
ment cost, called damage ratio (DR) experienced by a
building at given site were simulated from a so-called
“damage function” (DF), which is not shown here.
A DF is a probabilistic relationship that presents the
DR as a function of the severity of the ground motion
IM, here Sa(0.3 s), observed at the site. In all six cases
the portfolio losses for each event were obtained by
simply adding the losses predicted at each site, if any.
The losses caused by all the events in the catalog and
the annual rate of occurrence of each earthquake were
then assembled to produce a curve showing the annual
mean rate of exceedance (MRE) of portfolio losses of
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Figure 7. Ratio of MRE curves from Cases 1-6 to MRE
curve for Case 3, where Boore et al. (2003) correlation func-
tion is used. The left panel refers to the large portfolio and
the right panel to the small portfolio.

different amounts. The MRE curves for the six cases
above are shown in Figure 6 for both the large and the
small portfolios displayed in Figure 4.

The loss exceedance curves in Figure 6 show that
the trend of the MRE curve is systematically dis-
torted if the spatial correlation of ground motion IMs
is ignored (Case 1). The rare losses are consistently
underestimated and the frequent losses are overesti-
mated compared to those produced by Cases 3 and
4, which we consider to be the benchmarks for this
exercise. This assertion becomes even more evident
when considering the ratio of the MRE curves from
Cases 1-6 to the MRE curve of the reference Case 3
as a function of MRE (Figure 7). For the large and
small portfolios, the underestimations occur for losses
corresponding to MREs less than or equal to 7 x 1073
and 1 x 1072, or mean return periods (MRPs) of about
150 or 100 years and longer, respectively.

As expected, neglecting the intra event site-to-site
correlation of IMs, namely setting p(4) =0 in Equa-
tion 4 (Case 2), produces loss estimates that are less
biased than those from Case 1. The underestima-
tion/overestimation of losses is still significant and
begins at about the same MRE (and MRP) values as
in Case 1. As expected, the bias introduced by neglect-
ing or underestimating the spatial correlation of IMs
is more severe for small portfolios than it is for large
ones. Neglecting ground motion correlation makes the
occurrence of extremely high (or low) ground motion
values everywhere in the footprint of the portfolio
essentially an impossible occurrence. When a portfo-
lio footprint (here about 4 km for the small portfolio) is
within the separation distance of the correlation model
(4km for Case 3 and 6 km for Case 4), then a sce-
nario with significantly higher (lower) than expected
ground motions at all sites in the portfolio is a much



more likely event than it is for portfolios with large
footprints. At an MRP of 1,000 years, for example,
the large portfolio losses are underestimated by 19%
in Case 1 and by 7% in Case 2. For the small portfo-
lio the bias in percentage terms increases to 22% for
Case 1 and 13% for Case 2.

The loss exceedance curves for Cases 3, 4, and 5,
namely those that include more realistic models of the
intra-event spatial correlation of IMs, are quite inter-
estingly fairly similar for both portfolios. The losses
are within +10% for all MRE values even for Case 5
where the spatial correlation is, by design, overes-
timated. Additional MRE curves (not shown here)
computed for a portfolio of about 25 structures con-
fined within a 1 km-diameter circle confirm these
findings (i.e., £20% in that case for all MRE values
of practical interest).

The similarity of MRE curves produced by differ-
ent models for spatial correlation of IMs implies that,
at least for this application and these two portfolios,
the details of the correlation function do not have a
significant impact on the losses of portfolios of struc-
tures with footprints ranging from one to more than
one hundred kilometers. For widely spread portfolios,
a significant departure from this cluster of consistent
MRE curves can only be obtained either when the
site-to-site spatial correlation of IMs is disregarded
(Case 1), as discussed above, or when it is unrealisti-
cally overestimated (Figure 7 left), such as in Case 6
where the ground motion IMs at different sites are con-
sidered perfectly positively correlated RV’s regardless
of inter-site distance. For portfolios with small foot-
prints, on the other hand, assuming perfect positive
correlation of IMs appears to produce a less significant
bias in the loss estimates

5 CHARACTERIZATION OF UNCERTAINTY
IN SHAKEMAPS

The tools described above can also be modified to sim-
ulate spatially correlated ground motions that are also
consistent with observed ground motion IMs at indi-
vidual sites with recording instruments. This approach
is useful for rapid post-earthquake ground motion esti-
mation tools such as ShakeMap. By more completely
characterizing the ground motion IMs that may have
occurred at locations with no recordings, PAGER and
other similar tools developed by USGS will be able
to more accurately assess the uncertainty in post-
earthquake rapid estimates of fatalities and losses.

In this case, the proposed alternative approach
uses conditional simulation of &, ; values at individual
locations, given observations from recording stations
and previously simulated locations. These &;; values
can then be added back to mean attenuation predic-
tions in Equation 2 to obtain realizations of ground
motion IMs.

The joint realizations of &;; values in a region of
interest can be generated using a conditional simu-
lation approach. To do this, the approach described
in Section 3 is modified as follows. The vector X is
still used to describe the joint Gaussian distribution
of &;; values at the M sites of interest (the sites where
properties are located as well as the sites where record-
ings were obtained). We now partition this vector into
two sub-vectors X’ (containing the sites of interest for
loss analysis) and Xgps (consisting of the sites with
observed ground motion intensities).

By re-ordering the elements of X and partitioning
the relevant matrices, the distribution of the vector can
be denoted

where, as before, the elements of X are evaluated using
Equation 4 using the separation distance between the
two associated sites. Nothing in this equation requires
knowledge of observed ground motion intensities —
the ordering is merely for notation and convenience at
the next step.

The observed values of ;; are incorporated into
the model by noting that the values of Xgps, are now
known. With this information, the conditional distri-
bution of X”, given knowledge that the vector of &;;
values at Xops, are equal to x is given by

(6)

[X'| X, = X] ~Ny (I:EZIE;IIXJ’I:ZZZ - EZIE;IIZU ) (@)

where [A|B] is used to denote the distribution of A
given B. Whereas the original (marginal) mean and
covariance of X’ were 0 and Xj,, respectively, those
have been updated based on the observed values. It
is interesting to note that with this multivariate nor-
mal model, the conditional covariance of X’, ¥,, —
22121’11212, is always less than X,;, and that it is
independent of the observed values x.

Once the mean and standard deviation of this con-
ditional distribution have been computed using Equa-
tion 7, the Cholesky decomposition and simulation
approach described above can proceed as before. Sim-
ulated values at the sites with recordings will always
equal the recorded value (because the conditional
mean is equal to the observed value and the condi-
tional standard deviation is equal to zero). Conditional
simulations at sites nearby the recordings will also
have reduced standard deviations and adjusted means
in accordance with the specified spatial correlation.

The joint realizations of &;; values in a region of
interest can also be generated using a series of succes-
sive conditional simulations (Goovaerts 1997). First,
the conditional distribution at an arbitrary unsampled
location, X', is determined, conditional upon values



Figure 8. Conditional simulations of &;; from the Chi-Chi
earthquake, conditional upon the observed values in Figure 1.

of'the originally sampled data points. This conditional
distribution is obtained using Equation 7, but now X’ is
only a scalar rather than a vector. A simulated value of
&, 1s generated using this conditional distribution, and
this simulated value is fixed while additional &; ; values
are simulated conditional upon this observed value.
The final simulations are mathematically identical to
the one-step simulation approach described in more
detail here, but the conditional simulation approach
sometimes has computational advantages because the
conditioning covariance matrices can be reduced to
account for only locations nearby the individual loca-
tion of interest, thus reducing the size of the ¥, matrix
that must be inverted.

Three example &;; simulated random fields that are
consistent with observed &; ;values from Figure 1 are
shown in Figure 8. At every point in the simulations
of Figure 8 where an observation is available in Figure
1, the simulations are equal to the observed values.
At locations near to recordings, the variance of &;;
values from the simulations is reduced because of the
correlation with the nearby observed value.

The simulations of Figure 8 were produced using
an implementation of Equation 7 in the open-source
GSLIB geostatistics software package (Deutsch and
Journel 1997). These &;; simulations can be incorpo-
rated into Equation 2 to produce simulations of ground
motion IMs that are spatially dependent and also
consistent with observed intensities at the recording
station locations. The simulations can then be used to
quantify uncertainty in ShakeMap-type ground motion

intensity maps, or to perform post-earthquake portfo-
lio loss analysis that incorporates measured ground
motion intensities.

6 CONCLUSIONS AND
RECOMMENDATIONS

This paper has shown how empirically-calibrated spa-
tially correlated random fields of ground motion IMs
(e.g., PGA or spectral accelerations), can be developed
and utilized for hazard analysis and loss estimation.

The sources of correlation in ground motion inten-
sities were discussed, and treatment of these uncertain-
ties in current ground motion prediction models was
described. Within this treatment approach, a model for
correlation on inter- and intra-event ground motion
intensity residuals was described, and an approach for
modeling these correlations was presented. Inter-event
residuals are perfectly correlated within a specific
earthquake, while intra-event residuals are only par-
tially correlated, with a correlation model that must be
determined empirically.

Once the correlation model for these residuals was
determined, an approach for simulating random fields
of correlated ground motion IMs was described. Under
the reasonable assumption that the IM residuals have a
jointnormal distribution, and by utilizing the Cholesky
decomposition of the covariance matrix for this joint
normal random vector, it is possible to efficiently sim-
ulate realizations of this spatially correlated IM field.
The correlation modeling and ground motion simula-
tion results were then effectively used in two important
applications:

e Generation of spatially correlated random fields
of given IMs (similar to the USGS-sponsored
ShakeMaps) for both future scenario earthquakes
and past events.

o Loss estimation for spatially extended portfolios of
structures.

As an example of the first application, we generated
maps of S,(0.3 s) consistent with the Northridge 1994
earthquake fault rupture but not with the Northridge
available recordings and others consistent with both
the rupture and the recordings of the Chi-Chi, Taiwan,
1999 earthquake. In the latter case the simulated IM
maps at sites nearby the recording stations also have
reduced standard deviations and adjusted means in
accordance with the specified spatial correlation. A set
of such maps could be generated in a post-earthquake
environment as alternative realizations of the USGS
ShakeMaps, which away from the recording stations
rely on median values of IMs.

The second application has shown that only by mod-
eling the spatial correlation of IMs can one avoid intro-
ducing a bias in portfolio loss estimates. Neglecting or



underestimating the spatial correlation of IMs tends to
overestimate frequent losses and underestimate rare
ones. The opposite holds if the spatial correlation of
IMs is severely overestimated with respect to empiri-
cal observations. This study has shown, however, that
at least for the cases considered here the portfolio loss
estimates seem to be fairly insensitive to the details of
the mathematical model adopted to describe the spatial
correlation of IMs. This suggests that the choice of the
specific correlation model for simulation and loss esti-
mation studies may not be critical, but it does not imply
that such correlations can be completely neglected.
Note that these findings may not hold true in all cases.
More research is needed to evaluate their generality.
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